

Typing Dynamic Layer Composition

Atsushi Igarashi (Kyoto U.)

joint work with
Robert Hirschfeld (HPI)

Hidehiko Masuhara (Tokyo Tech.)
Hiroaki Inoue (Kyoto U.)

Goal: Support for modularization of behavioral
variations depending on the dynamic context of
execution

Example: Mobile email app

Context-Oriented Programming (COP)
Language [Costanza, Hirshfeld DLS05]
[Hirschfeld, Costanza, Nierstrasz JOT08]

When network is fast
inline images are shown

When network is slow
no images are shown

Common COP language features
● Layer

● A unit of behavioral variations, consisting of
partial method definitions for multiple classes

● (Loose) correspondence to contexts
● A unit of cross-cutting modularity

● Dynamic layer activation
● To change the behavior of a set of objects at

the same time

Dynamic Layer Activation in COP

C
+ m1
+ m2

D E
+ m3

F
+ m4

C

D E

F

+ m2

+ m1

+ m5

Base class hiearchy
Layer of partial methods

Dynamic Layer Activation in COP

C
+ m1
+ m2

D E
+ m3

F
+ m4

C

D E

F

+ m2

+ m1

+ m5

Base class hiearchy
● Layer activation

changes behavior of
objects that have been
already instantiated

● Partial methods can call
the original behavior by
proceed()

This Talk
● Quick tour on JCop [Appeltauer+], a specific

implementation of COP on top of Java
● With a more concrete example
● (Comparison with AOP using pointcut/advice)

● Foundations of COPL

This Talk
● Quick tour on JCop [Appeltauer+], a specific

implementation of COP on top of Java
● With a more concrete example
● (Comparison with AOP using pointcut/advice)

● Foundations of COPL

Example: Telecom simulation
(adapted from AOP example)

● Class Conn to represent connection between
two Customers
● complete() when a connection has been

established
● drop() when the customers are disconnected

● Behavioral variations to consider
● Recording the lengths of conversations
● Billing

Base Program
class Conn { // Connection
 Conn(Customer a, Customer b) { … }
 void complete() { … }
 void drop() { … }
 // details are not important ...
}

static Conn simulate() {
 Customer robert = …, hidehiko = …;
 Conn c = new Conn(robert, hidehiko);
 // Robert calls Hidehiko
 c.complete(); // Hidehiko accepts
 c.drop(); // and hangs up
 return c;
}

Layer for Measuring Time
layer Timing {
 Timer timer = …;
 void Conn.complete(){ proceed(); timer.start();}
 void Conn.drop(){ timer.stop(); proceed(); }
 int Conn.getTime() { return timer.getTime(); }
}

● The two methods in Conn are modified by
partial method definitions to operate the timer
● The original behavior is represented by proceed()

● getTime() is newly introduced
● but also called “partial” method

Layer Activation with with

● with block to activate a layer
● Activation is effective even in methods

invoked inside the block
● A layer instance has to be created

● Layer instances are also first-class objects

with (new Timing()) { // layer activation!
 Conn c = simulate();
 System.out.println(c.getTime());
}

Layer for Billing
layer Billing {
 void Conn.drop() { proceed(); charge(); }
 void Conn.charge() { … getTime(); … }
}

with (new Timing()) {
 with (new Billing()) {
 Connection c = simulate();
} }

● Recently activated layer has priority
● drop() will stop the timer, hang the call, and

charge

Not in this example, but...
● One layer can contain partial methods

belonging to different classes
● c.f. Mixin layers [Smaragdakis&Batory 98]

● super() is also supported
● Layer inheritance/subtyping

Layer Inheritance/Subtyping
● Implementation of different billing policies,

switched by run-time conditions
abstract layer AbsBilling {
 void Conn.drop();
 void Conn.charge();
}
layer Billing1 extends AbsBilling { … }
layer Billing2 extends AbsBilling { … }

AbsBilling b =
 some_cond ? new Billing1():new Billing2();

with(b) { … }

Very rough Comparison
with Aspect/J-style AOP

COP AOP
Unit of behavior partial meth. advice

Oblivious? No Yes

Join points Meth. exec. Many kinds

Pointcut cflow +
execution

Many kinds

Some Foundational Questions
● What is the semantics of method invocations?

● What happens when the same layer is activated
more than once?

● How do proceed, super, and with interact with
each other?

● How can types prevent NoSuchMethodError?
● Object interface can change dynamically!
● Only overriding partial methods can proceed

This Talk
● Quick tour on COP language features

● With a more concrete example
● Foundations of COPL

A core calculus of COP: ContextFJ
[Hirschfeld, I., Masuhara FOAL'11]

ContextFJ = Featherweight Java [I.,Pierce,Wadler'99]

 + partial methods

 + proceed(), super()

 + with expressions

 - layers are global and second-class

 - no layer inheritance

ContextFJ<:
[Inoue&I. APLAS'15]

ContextFJ<: = Featherweight Java

 + partial methods

 + proceed(), super()

 + with expressions

+ first-class layers (w/o fields)

+ layer inheritance

+ layer subtyping

9

6

C1

C2

C3

L2L1

3

8

5

C1

C2

C3

2

7

4

C1

C2

C3

1

Semantics of
Method Dispatch
w/o Layer Inheritance

with (new L1()) {
 with (new L2()) {
 c3.m(…);
} }

Semantics with Layer Inheritance
● “3D” dispatching
● Each layer can be thought of as the result of

(possibly overriding) composition of
superlayers

L1

L2

C D
E F

C D
E F

C D

E F

This Talk
● Quick tour on COP language features

● With a more concrete example
● Foundations of COPL

● (Operational) Semantics
● Type System

– To prevent “NoSuchMethodError” including dangling
proceed calls

C
+ m1
+ m2

D E
+ m3

F
+ m4

C

+ m2

+ m1

+ m5

Overriding partial method

“Baseless” partial method,
which can dynamically change
the object interface!

“Sounds like an old problem.
What is a challenge?”

● Object interfaces can change as layers are
(de)activated!

Key Ideas (1/2)

Approximating activated layers at each program
point
● With the help of explicit “requires”

declarations to specify inter-layer dependency
● (Static analysis could dispense with such explicit

declarations)

Key Ideas (2/2)

Two kinds of substitutability for layers
● When one layer L1 requires layer L2, does a

sublayer of L2 can satisfy L1's requirement?
● When is it safe to pass an instance of a layer to

where a supertype is expected?

should be distinguished

Telecom example, revisited

● For charge() in Billing to work, baseless
partial method getTime() defined in Timing
should be active beforehand

class Conn {
 Conn(Customer a, Customer b) { … }
 void complete() { … }
 void drop() { … }
}

layer Timing {
 Timer Conn.timer;
 void Conn.complete() { proceed(); timer.start(); }
 void Conn.drop() { timer.stop(); proceed(); }
 int Conn.getTime() { return timer.getTime(); }
}

layer Billing {

 void Conn.drop(){ proceed(); charge(); }

 void Conn.charge(){ … getTime(); … }
}

class Conn {
 Conn(Customer a, Customer b) { … }
 void complete() { … }
 void drop() { … }
}

layer Timing {
 Timer Conn.timer;
 void Conn.complete() { proceed(); timer.start(); }
 void Conn.drop() { timer.stop(); proceed(); }
 int Conn.getTime() { return timer.getTime(); }
}

layer Billing {

 void Conn.drop(){ proceed(); charge(); }

 void Conn.charge(){ … getTime(); … }
}

Telecom example, revisited

● For charge() in Billing to work, baseless
partial method getTime() defined in Timing
should be active beforehand

● In other words, Billing requires Timing

requires Timing

Meaning of requires

When layer L requires L
1
, ..., L

n

● All of L
1
, ..., L

n
 (or their sublayers) must have

been already activated (in any order) before
activating L

● Partial method in L can invoke methods
defined in any of L

1
, ..., L

n

● Partial method m in L can proceed when any
of L

1
, ..., L

n
 (or base class) defines m

Type Judgment

“Under set Λ of activated layers and type env. Γ,
exp e is given type C”

● {}; c: Conn ├ c.getTime() : int

● {Timing}; c: Conn ├ c.getTime() : int

● {}; c: Conn├ with (new Timing())c.getTime() : int

● {}; c: Conn ├ with (new Billing())c.drop() : void

● {Timing}; c: Conn
 ├ with (new Billing()) c.drop() : void

Λ; Γ├ e : TΛ; Γ├ e : T
Coeffect system?

Inheritance, subtyping and
requires

● Sublayer can't require fewer layers than its
parent
● Otherwise, requirement by inherited partial

methods may be invalidated
● It seems natural to allow a sublayer to

require more layers ...

…Or, maybe not!

● The type system seems to always allow
with(b) (if AbsBilling requires no layer)

● But, what if Billing2 requires more layers
than AbsBilling?
● At run time, dependecy is broken!!

AbsBilling b =
 some_condition ? new Billing1():new Billing2();

with(b) { … }

Our Solution:
Two subtyping rels for layer types
● Weak subtyping (reflexive transitive closure

of extends) for checking requires at with

● Normal subtyping (reflexive transitive
closure of extends with invariant
requires) for ordinary subsumption

// L1 extends L2, L3 requires L2
with(new L1())
 with(new L3()) { … }

For more details
● ContextFJ [Hirschfeld, I., Masuhara; FOAL'11]

● Operational semantics
● Simple type system disallowing baseless methods

● Type system for baseless methods [I.,
Hirschfeld, Masuhara; FOOL12]

● (Slightly different activation semantics)
● Layer inheritance & first-class layers

[Inoue&I.; APLAS'15]

Related Work
● Type System for COP [Clarke & Sergey; COP'09]

● ContextFJ
– proposed independently of us
– no inheritance, subtly different semantics

● Set of method signatures as method-wise
dependency information
– Finer-grained specification

● No proof of soundness
– In fact, the type system turns out to be flawed

(personal communication), due to without

Related Work, contd.
● Type Systems for Mixins [Bono et al., Flatt et al.,

Kamina&Tamai, etc.]

● Interfaces of classes to be composed
– Structural type information

● Composition is fixed once an object is instantiated
● A similar idea works (to some extent ;-) also for

more dynamic composition as in COP
● Types for FOP, DOP

Related Work, contd.^2
● Typestate checking [Strom&Yemini'86, etc.]

● Checking state transition for computational
resources (such as files and sockets)

● Layer configuration can be considered a state

Conclusion
● Dynamic layer composition for describing

context-dependent behavioral change
concisely and modularly

● Inter-layer dependency (requires) works
for dynamic composition (as well as static)

● Two kinds of subtyping relations

Future work:
● Type-sound deactivation

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 24
	ページ 25
	ページ 38
	ページ 39
	ページ 40
	ページ 41
	ページ 42
	ページ 43
	ページ 44
	ページ 45
	ページ 47
	ページ 48
	ページ 49
	ページ 68
	ページ 69
	ページ 70
	ページ 71
	ページ 72

