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Goal:  Support for modularization of behavioral 
variations  depending on the dynamic context of 
execution

Example: Mobile email app

Context-Oriented Programming (COP)
Language [Costanza, Hirshfeld DLS05]
[Hirschfeld, Costanza, Nierstrasz JOT08]

When network is fast
inline images are shown

When network is slow
no images are shown



 

Common COP language features
● Layer

● A unit of behavioral variations, consisting of 
partial method definitions for multiple classes

● (Loose) correspondence to contexts
● A unit of cross-cutting modularity

● Dynamic layer activation
● To change the behavior of a set of objects at 

the same time



 

Dynamic Layer Activation in COP
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Base class hiearchy
● Layer activation 

changes behavior of 
objects that have been 
already instantiated

● Partial methods can call 
the original behavior by 
proceed()



 

This Talk
● Quick tour on JCop [Appeltauer+], a specific 

implementation of COP on top of Java
● With a more concrete example
● (Comparison with AOP using pointcut/advice)

● Foundations of COPL
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Example: Telecom simulation
(adapted from AOP example)

● Class Conn to represent connection between 
two Customers
● complete() when a connection has been 

established
● drop() when the customers are disconnected

● Behavioral variations to consider
● Recording the lengths of conversations
● Billing



 

Base Program
class Conn { // Connection
  Conn(Customer a, Customer b) { … }
  void complete() { … } 
  void drop() { … }
    // details are not important ...
}

static Conn simulate() {
  Customer robert = …, hidehiko = …;
  Conn c = new Conn(robert, hidehiko);
                 // Robert calls Hidehiko
  c.complete();  // Hidehiko accepts
  c.drop();      // and hangs up
  return c;
}



 

Layer for Measuring Time
layer Timing {
  Timer timer = …;
  void Conn.complete(){ proceed(); timer.start();}
  void Conn.drop(){ timer.stop(); proceed(); }
  int Conn.getTime() { return timer.getTime(); }
}

● The two methods in Conn are modified by 
partial method definitions to operate the timer 
● The original behavior is represented by proceed()

● getTime() is newly introduced
● but also called “partial” method



 

Layer Activation with with

● with block to activate a layer
● Activation is effective even in methods 

invoked inside the block
● A layer instance has to be created

● Layer instances are also first-class objects

with (new Timing()) {  // layer activation!
  Conn c = simulate();
  System.out.println(c.getTime());
}



 

Layer for Billing
layer Billing {
  void Conn.drop() { proceed(); charge(); }
  void Conn.charge() { … getTime(); … }
}

with (new Timing()) {
  with (new Billing()) {
    Connection c = simulate();
} }

● Recently activated layer has priority
● drop() will stop the timer, hang the call, and 

charge



 

Not in this example, but...
● One layer can contain partial methods 

belonging to different classes
● c.f. Mixin layers [Smaragdakis&Batory 98]

● super() is also supported
● Layer inheritance/subtyping



 

Layer Inheritance/Subtyping
● Implementation of different billing policies, 

switched by run-time conditions
abstract layer AbsBilling {
  void Conn.drop();
  void Conn.charge();
}
layer Billing1 extends AbsBilling { … } 
layer Billing2 extends AbsBilling { … } 

AbsBilling b =
  some_cond ? new Billing1():new Billing2();

with(b) { … }



 

Very rough Comparison
with Aspect/J-style AOP

COP AOP
Unit of behavior partial meth. advice

Oblivious? No Yes

Join points Meth. exec. Many kinds

Pointcut cflow +
execution

Many kinds



 

Some Foundational Questions
● What is the semantics of method invocations?

● What happens when the same layer is activated 
more than once?

● How do proceed, super, and with interact with 
each other?

● How can types prevent NoSuchMethodError?
● Object interface can change dynamically!
● Only overriding partial methods can proceed



 

This Talk
● Quick tour on COP language features

● With a more concrete example
● Foundations of COPL



 

A core calculus of COP: ContextFJ
[Hirschfeld, I., Masuhara FOAL'11]

ContextFJ = Featherweight Java [I.,Pierce,Wadler'99]

 + partial methods

 + proceed(), super()

 + with expressions

 - layers are global and second-class

 - no layer inheritance



 

ContextFJ<:
[Inoue&I. APLAS'15]

ContextFJ<: = Featherweight Java

 + partial methods

 + proceed(), super()

 + with expressions

+ first-class layers (w/o fields)

+ layer inheritance

+ layer subtyping
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Semantics of 
Method Dispatch
w/o Layer Inheritance

with (new L1()) {
  with (new L2()) {
    c3.m(…);
} }



 

Semantics with Layer Inheritance
● “3D” dispatching
● Each layer can be thought of as the result of 

(possibly overriding) composition of 
superlayers
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This Talk
● Quick tour on COP language features

● With a more concrete example
● Foundations of COPL

● (Operational) Semantics
● Type System

– To prevent “NoSuchMethodError” including dangling 
proceed calls
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Overriding partial method

“Baseless” partial method,
which can dynamically change
the object interface!

“Sounds like an old problem. 
What is a challenge?”

● Object interfaces can change as layers are 
(de)activated!



 

Key Ideas (1/2)

Approximating activated layers at each program 
point
● With the help of explicit “requires” 

declarations to specify inter-layer dependency
● (Static analysis could dispense with such explicit 

declarations)



 

Key Ideas (2/2)

Two kinds of substitutability for layers
● When one layer L1 requires layer L2, does a 

sublayer of L2 can satisfy L1's requirement?
● When is it safe to pass an instance of a layer to 

where a supertype is expected?

should be distinguished



 

Telecom example, revisited

● For charge() in Billing to work, baseless 
partial method getTime() defined in Timing 
should be active beforehand

class Conn {
  Conn(Customer a, Customer b) { … }
  void complete() { … }
  void drop() { … }
}

layer Timing {
  Timer Conn.timer;
  void Conn.complete() { proceed(); timer.start(); }
  void Conn.drop() { timer.stop(); proceed(); }
  int Conn.getTime() { return timer.getTime(); }
}

layer Billing                  {

  void Conn.drop(){ proceed(); charge(); }

  void Conn.charge(){ … getTime(); … }
}



 

class Conn {
  Conn(Customer a, Customer b) { … }
  void complete() { … }
  void drop() { … }
}

layer Timing {
  Timer Conn.timer;
  void Conn.complete() { proceed(); timer.start(); }
  void Conn.drop() { timer.stop(); proceed(); }
  int Conn.getTime() { return timer.getTime(); }
}

layer Billing                  {

  void Conn.drop(){ proceed(); charge(); }

  void Conn.charge(){ … getTime(); … }
}

Telecom example, revisited

● For charge() in Billing to work, baseless 
partial method getTime() defined in Timing 
should be active beforehand

● In other words, Billing requires Timing

requires Timing



 

Meaning of requires

When layer L requires L
1
, ..., L

n

● All of L
1
, ..., L

n
 (or their sublayers) must have 

been already activated (in any order) before 
activating L

● Partial method in L can invoke methods 
defined in any of L

1
, ..., L

n

● Partial method m in L can proceed when any 
of L

1
, ..., L

n
 (or base class) defines m



 

Type Judgment              

“Under set Λ of activated layers and type env. Γ, 
exp e is given type C”

● {}; c: Conn  ├ c.getTime() : int

● {Timing}; c: Conn  ├ c.getTime() : int

● {}; c: Conn├ with (new Timing())c.getTime() : int

● {}; c: Conn  ├ with (new Billing())c.drop() : void

● {Timing}; c: Conn
          ├ with (new Billing()) c.drop() : void

Λ; Γ├ e : TΛ; Γ├ e : T
Coeffect system?



 

Inheritance, subtyping and 
requires

● Sublayer can't require fewer layers than its 
parent
● Otherwise, requirement by inherited partial 

methods may be invalidated
● It seems natural to allow a sublayer to 

require more layers ...



 

…Or, maybe not!

● The type system seems to always allow 
with(b) (if AbsBilling requires no layer)

● But, what if Billing2 requires more layers 
than AbsBilling?
● At run time, dependecy is broken!!

AbsBilling b =
  some_condition ? new Billing1():new Billing2();

with(b) { … }



 

Our Solution: 
Two subtyping rels for layer types
● Weak subtyping (reflexive transitive closure 

of extends) for checking requires at with

● Normal subtyping (reflexive transitive 
closure of extends with invariant 
requires) for ordinary subsumption

// L1 extends L2,  L3 requires L2
with(new L1())
  with(new L3()) { … }



 

For more details
● ContextFJ [Hirschfeld, I., Masuhara; FOAL'11]

● Operational semantics
● Simple type system disallowing baseless methods

● Type system for baseless methods [I., 
Hirschfeld, Masuhara; FOOL12]

● (Slightly different activation semantics)
● Layer inheritance & first-class layers 

[Inoue&I.; APLAS'15]



 

Related Work
● Type System for COP [Clarke & Sergey; COP'09]

● ContextFJ
– proposed independently of us
– no inheritance, subtly different semantics

● Set of method signatures as method-wise 
dependency information
– Finer-grained specification

● No proof of soundness
– In fact, the type system turns out to be flawed 

(personal communication), due to without



 

Related Work, contd.
● Type Systems for Mixins [Bono et al., Flatt et al., 

Kamina&Tamai, etc.]

● Interfaces of classes to be composed
– Structural type information

● Composition is fixed once an object is instantiated
● A similar idea works (to some extent ;-) also for 

more dynamic composition as in COP
● Types for FOP, DOP



 

Related Work, contd.^2
● Typestate checking [Strom&Yemini'86, etc.]

● Checking state transition for computational 
resources (such as files and sockets)

● Layer configuration can be considered a state



 

Conclusion
● Dynamic layer composition for describing 

context-dependent behavioral change 
concisely and modularly

● Inter-layer dependency (requires) works 
for dynamic composition (as well as static)

● Two kinds of subtyping relations 

Future work:
● Type-sound deactivation
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